12/5+y^2=25

Simple and best practice solution for 12/5+y^2=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12/5+y^2=25 equation:



12/5+y^2=25
We move all terms to the left:
12/5+y^2-(25)=0
determiningTheFunctionDomain y^2-25+12/5=0
We multiply all the terms by the denominator
y^2*5+12-25*5=0
We add all the numbers together, and all the variables
y^2*5-113=0
Wy multiply elements
5y^2-113=0
a = 5; b = 0; c = -113;
Δ = b2-4ac
Δ = 02-4·5·(-113)
Δ = 2260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2260}=\sqrt{4*565}=\sqrt{4}*\sqrt{565}=2\sqrt{565}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{565}}{2*5}=\frac{0-2\sqrt{565}}{10} =-\frac{2\sqrt{565}}{10} =-\frac{\sqrt{565}}{5} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{565}}{2*5}=\frac{0+2\sqrt{565}}{10} =\frac{2\sqrt{565}}{10} =\frac{\sqrt{565}}{5} $

See similar equations:

| (40x-2.5x^2)=90 | | 4a+2=5a-5 | | -26+3s=-9(7s+5) | | 6n+8n=2n+36 | | 2(x+4)=3(2x+1 | | x+3-2=10x-3x+15 | | 114=5x+3(x+6) | | 74=7x+4(x+2) | | X=100+-3y | | 5x+5(2x-2)=80 | | -2a-9=-3 | | 40=3x+2(4x-13) | | 5x+7(x-4)=44 | | 86=3x+5(2x-14) | | 7x+5(x+4)=92 | | 6y-90=60 | | 4f+9+5=20 | | 8=2y/3 | | 4/7=72/g | | 10x^2+30=-35 | | 5x+80=120 | | 7n^2-84=28n | | 8x^2+56x=-48 | | 25=2u+9 | | -8(5r-6)=31+2r | | 5v^2+35v=0 | | 33=4c-5c | | 5x=+72 | | 7u-12=16 | | 3v^2-36=12v | | 4y-5y=17 | | (k+12)^2=97 |

Equations solver categories